

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 179 (2006) 3229-3237

www.elsevier.com/locate/jssc

Solvothermal synthesis and characterisation of $La_{1-x}A_xMnO_3$ nanoparticles

Carlos Vázquez-Vázquez*, M. Arturo López-Quintela

Facultade de Química. Departamento de Química Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

Received 23 January 2006; received in revised form 20 April 2006; accepted 11 June 2006 Available online 27 June 2006

Abstract

The synthesis of $La_{1-x}A_xMnO_3$ (A = Ca, Sr, Ba) nanoparticles in nonaqueous solvents has been studied. For this solventermal procedure benzyl alcohol and acetophenone were chosen as reaction media. After this treatment in mild conditions a precipitate was obtained, which, however, can be annealed to the crystalline perovskite structure. Our results show that acetophenone is more suited to obtain the clean pervoskite phase than benzyl alcohol.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Solvothermal synthesis; Nanoparticles; Lanthanum manganite; Non-aqueous synthesis

1. Introduction

The discovery of giant and colossal magnetorresistance in doped lanthanum manganite, $La_{1-x}A_xMnO_3$ (A = Ca, Sr, Ba), thin films [1] and polycrystalline samples [2], respectively, was the starting point for a number of research studies related to those perovskites. Their interesting magnetic and magnetotransport properties are related to the mixed-valence of the manganese cations in the perovskite structure, due to the hopping of electrons between Mn(III) and Mn(IV) cations and the presence of cationic vacancies. Additionally, these manganites have also shown catalytic activity [3] and are interesting as cathode materials in solid oxide fuel cells [4].

Different synthetic procedures have been used for preparing these materials in order to study the influence of particle size on their properties, including conventional solid state reaction, coprecipitation [5], sol-gel [6] and molten salts reactions [7].

In the search of novel pathways for the synthesis of $La_{1-x}A_xMnO_3$ nanoparticles, hydrothermal methods have also been studied in some papers. Bernard et al. have prepared $La_{1-x}Sr_xMnO_{3+d}$ by using nitrate and acetate

precursors in hydrothermal conditions, adding citric acid as complexing agent, and adjusting the pH with ammonia or tetramethyl ammonium hydroxide [8]. Zhu et al. have prepared $La_{0.5}Sr_{0.5}MnO_3$ and $La_{0.5}Ba_{0.5}MnO_3$ nanowires by adding potassium permanganate in alkaline medium to the metallic precursor [9]. Urban et al. have improved the synthetic conditions of the last procedure and were able to prepare $La_{0.5}Ba_{0.5}MnO_3$ single-crystalline nanocubes [10].

Nevertheless, the synthesis of $La_{1-x}A_xMnO_3$ nanoparticles in nonaqueous conditions (i.e. a solvothermal procedure) has not been yet explored. This novel synthetic procedure has been used by Niederberger et al. for preparing highly crystalline simple oxides as TiO₂ [11], VO₂, WO₃ [12], Fe₂O₃ [13] nanoparticles; as well as some few ternary oxides, such as BaTiO₃ and SrTiO₃ [14]. Here we report the successful solvothermal preparation of a series of doped and undoped lanthanum manganites: La_{1-x}A_xMnO₃ (A = Sr, Ca, Ba; doping level: x = 0.33) and LaMnO₃, using either benzyl alcohol or acetophenone as solvents.

2. Experimental section

Materials: La(III) chloride, Mn(II) chloride, La(III) acetate hydrate, Ca(II) acetate monohydrate, Ba(II) acetate, Sr(II) acetate and Mn(III) acetate dihydrate were

^{*}Corresponding author. Fax: +34981595012.

E-mail address: qfmatcvv@usc.es (C. Vázquez-Vázquez).

^{0022-4596/\$ -} see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2006.06.021

supplied by Sigma-Aldrich (Germany); Ca(II) chloride, by Merck KGaA (Germany); benzyl alcohol and acetophenone, by Fluka (Switzerland); Mn(II) methoxide, by Alfa-Aesar (Germany); La(III) isopropoxide and La(III) methoxyethoxide (10–12% in methoxyethanol), by Gelest (ABCR, Karlsruhe, Germany); Mn(III) acetylacetonate, by Strem Chemicals (USA). All the chemicals were stored in a glove box under Ar atmosphere.

Synthesis: All the syntheses were carried out in autoclaves Parr Acid Digestion Bombs with 23 or 45 mL Teflon cups. The temperatures ranged from 180 to $250 \,^{\circ}$ C and the treatments lasted from 15 to 100 h, depending on the synthesis.

Benzyl alcohol as solvent: In a typical synthesis, the anhydrous metallic chlorides were dissolved separately in 1–2 g of ethanol (or directly in benzyl alcohol, as in sample B3) under mild stirring for 30 min. Afterwards, they were transferred to the Teflon vessel and filled up to $\frac{3}{4}$ its volume with benzyl alcohol. The mixture was stirred for 1–2 h before the autoclave was closed. All this procedure was carried out in the glove box. The solvothermal treatment at 200 °C for 2–3 days yields a white product that was centrifuged at 6500 rpm. Then, several washing-centrifugation steps were performed with 20 mL of ethanol (× 2) and 20 mL of tetrahydrofuran (THF) (× 2) before the powder was dried overnight at 100 °C. When Mn(II) methoxide was used as reagent, it was dissolved in 2 g of methanol.

Acetophenone as solvent: In a typical synthesis, the metallic acetates were dissolved directly in acetophenone

under mild stirring for 30 min. Then, the mixture was transferred to the autoclave and after 15 min stirring it was closed. The solvothermal treatment was carried out at 200 °C for 15–20 h and a brown product was obtained. This product was centrifuged at 6500 rpm and, afterwards, washed and centrifuged several times with 15–20 mL of chloroform or methylene chloride (\times 3). Then, the sample was dried overnight at 100 °C.

For both solvents (benzyl alcohol and acetophenone), when the metallic acetates were used, a preliminary evaporation step at 120 °C was carried out in some cases in order to remove the water given by the hydrated acetates.

The experimental conditions of the different samples are summarised in Tables 1 and 2. All the samples prepared with benzyl alcohol as solvent will be labelled as B, while those prepared with acetophenone as A.

The dried precursors were then calcined at different temperatures ranging from 500 to $800 \,^{\circ}$ C in order to crystallise the perovskite.

Characterisation: The samples were characterised structurally by X-ray powder diffraction (XRD) using a Bruker D8 diffractometer (CuK α radiation) in symmetric reflection. The diffractograms were compared with the PDF-2 database in order to identify the crystalline phases present in the samples. The amount of impurities was obtained qualitatively from the relative intensity of the main reflections of the several crystalline phases. The thermogravimetric measurements were carried out in a Perkin

 Table 1

 Experimental conditions of the samples prepared in benzyl alcohol

Sample	La reagent	Mn reagent	[BzOH]/[Mn(II)]	T (°C)	Time (h)
B1	La(III) chloride	Mn(II) chloride	80	200	89
B2	La(III) chloride	Mn(II) chloride	40	200	89
B3	La(III) chloride	Mn(II) chloride	80	200	62
B4	La(III) methoxyethoxide	Mn(II) methoxide	798.6	250	_
B5	La(III) methoxyethoxide	Mn(II) methoxide	776.6	180	24
B6	La(III) methoxyethoxide	Mn(II) methoxide	789.4	200	17
B7	La(III) acetate hydrate	Mn(III) acetate dihydrate	112.3	200	20
B 8	La(III) acetate hydrate	Mn(III) acetate dihydrate	589.7	200	14

Table 2

Experimental conditions of the samples prepared in acetophenone (all prepared at 200 °C)

Sample	La reagent	Mn reagent	A reagent	[solvent]/[Mn(II)]	Time (h)
Al	La(III) isopropoxide	Mn(III) acetylacetonate	_	735.9	20.5
A2	La(III) acetate hydrate	Mn(III) acetate dihydrate	_	815.1	16.5
A3	Idem	Idem	_	115.9	20
A4	Idem	Idem	_	511.0	14
A5	Idem	Idem	Ba(II) acetate	344.9	19
A6	Idem	Idem	Sr(II) acetate	299.2	18
A7	Idem	Idem	Ca(II) acetate dihydrate	277.8	16.5
A8	Idem	Idem	Ba(II) acetate	321.6	18
A9	Idem	Idem	Sr(II) acetate	300.1	17.5

Elmer TGA 7 thermobalance under N_2 flow and with a scan rate of 10 °C/min. Transmission electron microscopy (TEM) images were taken with a Zeiss EM 912 Ω at an acceleration voltage of 120 kV. Samples were ground in a mortar and taken up in acetone. One droplet of the suspension was applied to a 400 mesh carbon-coated copper grid and left to dry in air. The infrared spectra were recorded in a Bruker IFS-66v, with a scanning resolution of 0.25 cm⁻¹. The magnetic measurements were performed in a Quantum Design SQUID from 5 to 350 K in field-cooling (FC) and zero-field-cooling (ZFC) conditions with an applied magnetic field of 1000 G.

Table 3 X-ray diffraction study of the samples prepared in benzyl alcohol

3. Results and discussion

3.1. X-ray diffraction study

3.1.1. Benzyl alcohol as solvent

These samples were labelled as "B" samples. The results are summarised in Tables 3 and 4, where it is indicated the predominant and the secondary crystalline phases obtained during the synthesis.

The samples B1, B2 and B3—prepared from the La(III) and Mn(II) chlorides—showed thick needles (thicker than several hundreds of nanometers) of LaOCl (PDF

Sample	Thermal treatment	Predominant phase	Secondary phases
B1 b, B2 b, B3	3 b600 °C 3 h	LaOCl	
B4_a, B5_a	As prepared	La(OH) ₃	
B5_b	600 °C 3 h	Mixture of different La ₂ O ₂ CO ₃	LaMnO _{3.15}
B6_b	600 °C 3 h	Mixture of different La(III) carbonate and oxycarbones	
B6_c	Idem $+$ 800 °C 3 h	La_2O_3	$LaMnO_{3.15} + La(OH)_3$
B7_b	600 °C 6 h	La(OH) ₃	Tetragonal La ₂ O ₂ CO ₃ + LaMnO _{3.15}
B7_c	700 °C 3 h	La(OH) ₃	$LaMnO_{3,15} + Mn_3O_4$
B7_d	$500 \degree C 2h + wash with HOAc + 700 \degree$	C 3hLaMnO _{3.15}	Mn ₃ O ₄
B7_e	Wash with HOAc+700 °C 3 h	LaMnO _{3.15}	Mn_3O_4
B8_b	600 °C 6 h	Tetragonal La ₂ O ₂ CO ₃	LaMnO _{3.15}
B8_c	700 °C 3 h	La(OH) ₃	$LaMnO_{3,15}+La_2O_3$
B8_d	$500 \degree C 2h + wash with HOAc + 700 \degree$	C 3hLaMnO _{3.15}	$La_2O_3 + Mn_2O_3$

Table 4

X-ray diffraction study of the samples prepared in acetophenone

Sample	Thermal treatment	Predominant phase	Secondary phases
A1_b	600 °C 3 h	LaMnO _{3.15}	La ₂ O ₂ CO ₃
A1_c	Idem $+$ 800 °C 3 h	LaMnO _{3.15}	Unknown
A1_d	600 °C 2 h + washing step + 600 °C 2 h	LaMnO _{3.15}	$La_2O_2CO_3$
A2_b	500 °C 2 h	Amorphous	Hexagonal La ₂ O ₂ CO ₃
A2_c	Idem + washing step + $600 \degree C 3 h$	LaMnO _{3.15}	Amorphous
A2_d	Idem $+700 \degree C 3 h$	LaMnO _{3.15}	_
A3_b	500 °C 2 h	Tetragonal La ₂ O ₂ CO ₃	
A3 c	600 °C 6 h	LaMnO _{3.15}	Tetragonal La ₂ O ₂ CO ₃
A3_d	700 °C 3 h	LaMnO _{3.15}	Hexagonal La(OH) ₃
A3 e	$500 \degree C 2 h + washing step + 700 \degree C 3 h$	LaMnO _{3.15}	Mixture of different La ₂ O ₂ CO ₃ +Mn ₂ O ₃
A3 f	Washing step $+700$ °C 3 h	Hexagonal La(OH) ₃	
A4 b	500 °C 2 h	Tetragonal La ₂ O ₂ CO ₃	
A4 c	600 °C 6 h	LaMnO _{3.15}	Hexagonal La(OH) ₃ + tetragonal La ₂ O ₂ CO ₃
A4 d	700 °C 3 h	LaMnO _{3.15}	Hexagonal La ₂ O ₂ CO ₃
A4 e	$500 \degree C 2 h + washing step + 700 \degree C 3 h$	LaMnO _{3.15}	Mn ₃ O ₄
A6 b	500 °C 2 h	Tetragonal La ₂ O ₂ CO ₃	_
A6c	600 °C 3 h	La ₂ O ₃	Perovskite
A6 d	700 °C 3 h	$La_{0.8}Sr_{0.2}MnO_3$	Hexagonal La(OH) ₃
A7 b	500 °C 2 h	$La_{0.6}Ca_{0.4}MnO_3$	La ₂ CO ₅
A7 c	600 °C 3 h	$La_{0.6}Ca_{0.4}MnO_3$	Hexagonal La ₂ O ₂ CO ₃
A7 d	700 °C 3 h	$La_{0.6}Ca_{0.4}MnO_3$	Hexagonal La ₂ O ₂ CO ₃
A8 b	500 °C 2 h	BaCO ₃ Witherite	La ₂ CO ₅
A8 c	600 °C 3 h	BaCO ₃ Witherite	Perovskite + La_2Co_5
A8_d	700 °C 3 h	Perovskite	$La_2O_3 + hexagonal La(OH)_3$

card no. 8-477). So, the presence of chloride anions interferes with the synthesis of the manganite.

In the samples B4, B5 and B6—prepared from the La(III) and Mn(II) alkoxides—the range of temperatures was restricted. At 250 °C the pressure is higher than 80 bars and the rupture disk was broken. So, the other syntheses were carried out at 180 and 200 °C. The diffraction patterns of the as-prepared samples matched with hexagonal La(OH)₃ (PDF card no. 36-1481) and, after the calcination at 600 °C, a mixture of several lanthanum oxycarbonates (La₂O₂CO₃ or La₂CO₅) were obtained: tetragonal (type I; PDF card no. 23-320), monoclinic (type 1A; PDF card no. 23-322) and hexagonal (type II, PDF card no. 37-804). The presence of several types of oxycarbonates is in accordance with the reported transition temperatures for the tetragonal to monoclinic (at ca. 500 °C) and the monoclinic to hexagonal allomorphs (at ca. 525 °C).

In order to avoid the presence of oxycarbonates, an evaporation step at 150 °C was added to the synthesis. In this way, the low-boiling-point solvents (water, methoxyethanol and methanol) were removed from the mixture. However, the results were not satisfactory: a mixture of lanthanum carbonate and oxycarbonates was obtained up to 600 °C (sample B6_b) and, after calcination at 800 °C (sample B6_c), hexagonal La₂O₃ (PDF card no. 5-602) mixed with the distorted perovskite (LaMnO_{3.15}, PDF card no. 32-484) and hexagonal La(OH)₃ (PDF card no. 36-1481).

Depending on the Mn(IV) content, LaMnO_{3+ δ} has two main deviations from the ideal cubic structure of the perovskite: for Mn(IV) contents below ca. 20% (i.e. for $\delta \leq 0.10$), the structure is orthorhombic (space group Pbnm), while for Mn(IV) contents above ca. 20% (i.e. for $\delta > 0.10$), a rhombohedric distortion is present (space group R-3c) [15]. These two structures are easy to identify because, in the case of the rhombohedrally-distorted structure, a splitting of the main reflection of the perovskite (at ca. 32.5°2 θ) is observed. In all the samples studied we have never observed this splitting; so, this is a clear indication that the samples have a low Mn(IV) content.

In the samples B7 and B8—prepared from the La(III) and Mn(III) acetates—both approaches were used: the direct synthesis at 200 °C (B7) and the synthesis with the evaporation step prior to the solvothermal treatment (B8). The results were more encouraging using the metal acetates but secondary phases were still present (as shown in Table 3). In some cases, small amounts of hausmannite (Mn₃O₄, PDF card no. 24-734) were observed after washing with diluted acetic acid. This can be related to the removal of lanthanum oxycarbonates from the solid phase during the washing step.

The fact that benzyl alcohol is slightly acidic in the presence of water (p $K_a = 15.2$) could be the reason for such a large amount of unwanted phases. So, a less acidic organic solvent was tried [16]: acetophenone has a p $K_a \sim 20$ in the alpha C–H position and also a high boiling point (202 °C).

3.1.2. Acetophenone as solvent. Undoped lanthanum manganites

These samples were labelled as "A" samples. The results were much better in this case and are summarised in Table 4.

In the samples of the series A1—prepared from the La(III) isopropoxide and Mn(III) acetylacetonate—the predominant phase is always the perovskite and the secondary phase has only \sim 15% of relative intensity for the sample calcined at 800 °C.

When the La(III) and Mn(III) acetates were used as starting materials (series A2), the results were even closer to our needs. In Fig. 1 it is shown the diffraction patterns of these samples, showing that at low calcinations temperatures (500 °C) the sample is mainly amorphous and also some reflections from hexagonal La₂CO₅ (type II, PDF card no. 37-804) are present. This sample was washed with diluted acetic acid in order to remove these oxycarbonates and then it was annealed at 600 °C (sample A2_c) and afterwards at 700 °C (sample A2_d). Pure lanthanum manganite was obtained in this case.

The crystallite size, D_{hkl} , of the samples prepared at 600 and 700 °C was calculated from the main reflection of the rhombohedrally-distorted perovskite by means of the Debye–Scherrer equation:

$$D_{110}(\text{\AA}) = \frac{k \cdot \lambda}{\beta \cdot \cos \theta},$$

where k is a shape factor which normally ranges between 0.9 and 1.0 (in our case, k = 0.9), λ is the X-ray wavelength (CuK α_1 , $\lambda = 1.54060$ Å), and θ is the Bragg angle. β is the difference in profile widths of broadened and standard samples (in our case, a silicon standard was used): $\beta = \beta_{\text{sample}} - \beta_{\text{standard}}$, being β the integral breadth defined as

$$\beta = \frac{\text{Area}(\text{CuK}\alpha_1)}{\text{Intensity}(\text{CuK}\alpha_1)}$$

Fig. 1. X-ray diffractograms of the samples A2, prepared from the La(III) and Mn(III) acetates in acetophenone, calcined at several temperatures.

The individual fitting of the diffraction peaks were carried out using Gaussian profiles, and the crystallite size obtained for both samples was $D_{110} = 29$ nm.

Also in the samples of the series A3 the predominant phase was always the manganite; however, always a small amount of secondary phases were present (lanthanum hydroxide or oxycarbonates).

In order to remove the carbonates, the precursor was washed with diluted acetic acid just after preparation (sample A3_f). The calcination product in this case is only lanthanum hydroxide because the lanthanum oxide is transformed to hydroxide due to moisture [17].

The evaporation step for removing low-boiling-point solvents prior to the solvothermal treatment (samples A4) did not improve significantly the perovskite content, as compared with the samples without evaporation. However, in the case of the sample A4_e (annealed at 700 °C after a washing step with diluted acetic acid) the diffraction pattern matches well with the manganite, showing only two small broad bands (~3% of relative intensity, at ca. 29 and $36^{\circ}2\theta$ that can be assigned to hausmannite (Mn₃O₄, PDF card no. 24-734).

3.1.3. Acetophenone as solvent. Doped lanthanum manganites

The samples of the series A6, A7 and A8 correspond to doped lanthanum manganites. The nominal stoichiometries are $La_{0.67}Sr_{0.33}MnO_3$ for samples A6, $La_{0.67}Ca_{0.33}$ MnO₃ for samples A7 and $La_{0.67}Ba_{0.33}MnO_3$ for samples A8. In these cases, neither evaporation step nor washing step was carried out.

For the samples calcined at 500 $^{\circ}$ C, it was always observed the presence of broad reflections of tetragonal lanthanum oxycarbonate (type I; PDF card no. 23-320) (sample A6_b), calcium carbonate (Calcite, PDF card no. 5-586) (sample A7_b) or barium carbonate (Witherite, PDF card no. 5-378) (sample A8_b) in coexistence with broad bands due to the poor crystallisation of the perovskite at this temperature.

When the calcinations temperature is increased, the samples crystallise better and, although the carbonates and oxycarbonates are still present at 600 °C, the manganite becomes the predominant phase at 700 °C. In the case of strontium-doped lanthanum manganite (sample A6 d), the sample calcined at 700 °C shows a very small amount of $La(OH)_3$ as secondary phase (2% of relative intensity) (Fig. 2). The diffractogram matches well with the X-ray powder pattern of La_{0.8}Sr_{0.20}MnO₃ (monoclinic, PDF card no. 40-1100). However, there are few patterns of the doped lanthanum manganites in the PDF-2 database and, as a consequence, the stoichiometry cannot be determined from X-ray diffraction. For the calcium-doped sample (A7 d), the presence of hexagonal La₂CO₅ (type II, PDF card no. 37-804) is more important (16% of relative intensity). In this case, the diffractogram matches well with La_{0.6}Ca_{0.4} MnO_3 (orthorhombic, PDF card no. 46-513). For the barium-doped sample (A8 d), the diffractogram matches

Fig. 2. X-ray diffractograms of the doped lanthanum manganites prepared from the metallic acetates in acetophenone and calcined at 700 °C: (a) sample A6_d, La_{0.67}Sr_{0.33}MnO₃; and (b) sample A7_d, La_{0.67}Ca_{0.33}MnO₃. The Miller indices from an orthorhombic perovskite structure have been included in the first graph. The main secondary phases are labelled in the two graphs: \blacktriangle for La(OH)₃ in the first graph; and \blacksquare for hexagonal La₂O₂CO₃, in the second one.

well with a similar structure as the calcium-doped lanthanum manganite (no X-ray powder pattern was found in the PDF-2 database for the barium-doped lanthanum manganite) but the presence of secondary phases is higher.

The crystallite size, D_{110} of the strontium-doped lanthanum manganite sample prepared at 700 °C (A6_d) was obtained from the main reflection of the perovskite by means of the Debye–Scherrer equation, and is $D_{110} = 25$ nm.

All the as-prepared samples show crystalline materials, having some differences the diffraction patterns of the samples prepared in benzyl alcohol from those prepared in acetophenone. In Fig. 3 the X-ray diffraction pattern of sample A2_a, obtained when acetophenone is used as reaction medium is shown. The crystalline phase does not match with any crystalline material reported in the PDF-2

Fig. 3. X-ray diffractogram of the as-prepared sample A2_a, obtained from the metallic acetates in acetophenone.

Fig. 4. Thermogravimetric curve of the as-prepared sample A6_a, obtained from the metallic acetates in acetophenone.

database. Because of the large number of reflections at low angles it is thought we have a nanocomposite. Similar results have been recently published by Pinna et al. for the solvothermal synthesis of yttria [18].

3.2. Thermogravimetric study

Fig. 4 depicts the thermogravimetric curve for the asprepared sample A6_a, prepared in acetophenone and with the metallic acetates as starting reagents. Three steps can be observed:

- (1) From room temperature to $150 \,^{\circ}$ C (weight loss = 2%). This step is assigned to the moisture present in the sample.
- (2) From 150 to $500 \,^{\circ}$ C (weight loss = 44.9%). In this range of temperature, the acetates are decomposed into carbonates and oxycarbonates [19]. Additionally, the

evaporation and/or decomposition of some remaining acetophenone can occur in this step. The decomposition of lanthanum acetate is reported to have the following stages in between 300 and 500 $^{\circ}$ C [19]:

$$La(CH_3CO_2)_3 \rightarrow LaCO_3(CH_3CO_2) + CH_3COCH_3,$$

$$LaCO_3(CH_3CO_2) \rightarrow \frac{1}{2}La_2(CO_3)_3 + \frac{1}{2}CH_3COCH_3$$

$$La_2(CO_3)_3 \rightarrow La_2O_3.CO_2 + 2CO_2.$$

(3) From 500 to 900 °C (weight loss = 6.2%). In this step, the carbonates (CaCO₃, BaCO₃, SrCO₃ and MnCO₃) and oxycarbonates (La₂O₂CO₃) are decomposed to the corresponding oxides, by losing a CO₂ molecule. The formation of the perovskite occurs now by reaction between the different remaining oxides distributed all along the sample.

The same behaviour was observed for other as-prepared precursor.

3.3. Infrared study

The infrared spectra of the strontium-doped lanthanum manganite samples are shown in Fig. 5. The as-prepared sample (A6_a), at 200 °C, shows absorption bands almost identical to those of hydrated lanthanum acetate. Table 5 summarises the different assignments, taken from Karraker [20]. Some extra absorption bands are present due to the solvent (acetophenone).

Table 6 shows the assignments for the samples calcined at 500 and 600 °C. The main absorption bands match quite well with those of lanthanum hydroxycarbonate,

Fig. 5. Infrared spectra of the strontium-doped lanthanum manganite samples A6.

Table 5

Observed infrared absorption maxima of the as-prepared sample A6_a, and their assignments according to Karraker for hydrated lanthanum acetate [20]

Observed frequencies (cm ⁻¹)	Infrared absorption of $La(OAc)_3 \cdot 1.5$ H_2O (cm ⁻¹)	Band assignments
3385	3360	O–H stretch (H ₂ O)
3003		C–H stretch of the aromatic ring
2976		Asymmetric C–H stretch of the CH ₃ group
2929		Symmetric C–H stretch of the CH ₃ group
1597		C = C stretch aromatic ring
1549	1555	$-CO_2^-$ asymmetric stretch
1451	1445	$-CO_2^-$ symmetric stretch
1408	1410	CH ₃ asymmetric bend
1339	1346, 1332	CH ₃ symmetric bend
1051, 1032-1016	1049, 1015	CH ₃ rocking
950	938, 930	C–C stretch
663	663, 645	OCO bend
615, 490, 467	614, 467	-CO ₂ ⁻ rocking

Table 6

Observed infrared absorption maxima of the samples calcined at 500 and 600 $^{\circ}$ C (samples A6_b and A6_c), and their corresponding assignments

Observed frequencies (cm ⁻¹) Sample calcined at 500 °C	Observed frequencies (cm ⁻¹) Sample calcined at 600 °C	Band assignments
	3609	v _{s1} OH ⁻
3425	3438	v _{s2} OH ⁻
1632	1620	HOH bend
1460, 1427	1461, 1370	$v_3 CO_3^{2-}$
1087	1087	$v_1 CO_3^{2-}$
874	873	$v_2 CO_3^{2-}$
798, 778	798, 778	$v_4 \text{ CO}_3^{2-}$
603	608	Perovskite (Mn-O
		stretch)
503, 472	497	Cubic La ₂ O ₃ (La–O stretch)

La(CO₃)OH [21], and lanthanum oxycarbonates, La₂O₂ CO₃ [22]. In the sample calcined at 600 °C, the signal at 1370 cm⁻¹ points out the presence of the monoclinic or tetragonal polymorphs of the oxycarbonates [22].

The band at 1630 cm^{-1} is due to the water bending mode [23], suggesting the presence of both hydroxide ions and molecular water.

The presence of an absorption band at $470-500 \text{ cm}^{-1}$ could be related to the existence of the cubic La₂O₃ [24,25]. This oxide is only stable in a short temperature range, from 500 to 600 °C. Above 620 °C it is reported to transform into the more stable hexagonal polymorph [26].

Additionally, some remaining absorption bands, present at $2850-2925 \text{ cm}^{-1}$, are due to the acetophenone or some decomposition products of this solvent.

In the sample calcined at 700 °C, there are still some carbonates because of the presence of the absorption bands at 1459 and 1082 cm^{-1} . However, the main absorption is located at 609 cm⁻¹ and it is assignable to the metal-oxygen stretching in the perovskite [27].

4. TEM study

The TEM micrographs of the as-prepared undoped lanthanum manganite (sample A2_a, where acetophenone

Fig. 6. Transmission electron micrographs of the undoped lanthanum manganites, prepared in acetophenone (sample A2_a), showing the different morphologies obtained (bar = 100 nm).

Fig. 7. Transmission electron micrograph of the undoped lanthanum manganites calcined at 600 °C (sample A2_c) (bar = 200 nm).

was used as solvent), are shown in Fig. 6. As it can be observed, the material presents a large variety of morphologies: elongated pieces, porous structures and quasispherical particles (Fig. 6a) and planar structures with some small particles (ca. 5 nm) adsorbed to them (Fig. 6b). The precursor is amorphous, as detected by X-ray diffraction; so, an annealing step is required for crystallising the perovskite. When this precursor is annealed at $600 \,^{\circ}$ C for 3 h (sample A2_c), the sample starts to crystallise into nanoparticles with sizes ranging from 20 to 100 nm (Fig. 7). The particles are forming larger aggregates of several hundreds of nanometers in size, coming from the collapse of the original as-prepared sample.

In the case of the sample A6_d ($La_{0.67}Sr_{0.33}MnO_3$, calcined at 700 °C for 3 h), the nanoparticle size is, in average, a little larger than in the previous case and it ranges from 30 to 100 nm. The aggregation is still present.

5. Magnetic study

The magnetisation vs. temperature curves of the samples calcined at 700 °C A2_d (LaMnO_{3+ δ}) and A6_d (La_{0.67}Sr_{0.33}MnO₃) are shown in Fig. 8. The magnetisation were measured at an applied magnetic field, *H*, of 1000 Oe. The samples show a typical ferromagnetic behaviour. The Curie temperature, *T*_C, is obtained from the minimum of the first derivative of the magnetisation vs. temperature. For the sample A2_d, the value obtained for the ferromagnetic-to-paramagnetic transition is *T*_C = 265 K. More difficulties are found for the sample A6_d because of the lack of points above room temperature; however, the

Fig. 8. Magnetisation curves as a function of the temperature for the undoped and strontium-doped lanthanum manganites calcined at 700 °C: samples A2_d and A6_d, respectively.

minimum in the first derivative has to be slightly above 350 K.

The inverse susceptibility, χ^{-1} , vs. temperature indicate Curie–Weiss behaviour in the paramagnetic region [28]:

Curie–Weiss law :
$$\chi = \frac{C}{T - \theta_{p}} \Rightarrow$$

 $\chi^{-1} = -\frac{\theta_{p}}{C} + \frac{1}{C} \cdot T$

where C is the Curie constant and $\theta_{\rm p}$ is the Weiss temperature.

From the linear fit in the paramagnetic region of sample A2_d we can obtain the value of the Weiss temperature, $\theta_p = 258 \pm 4$ K, and the Curie constant, C. This value is smaller than the Curie temperature, $\theta_p < T_C$, and can be related to the failure to reach a magnetisation corresponding to full ferromagnetic alignment of all Mn. So, it appears to signal either retention of some antiferromagnetic domains or a small antiferromagnetic component in the matrix [29].

From the value of the Curie constant it can be obtained the effective magnetic moment μ_{eff} [28]:

$$C = \frac{N \cdot \mu_{\rm eff}^2}{3k_{\rm B}},$$

where N is the number of magnetic moments per mole and $k_{\rm B}$ is the Boltzmann constant.

The value obtained for the sample A2_d is $\mu_{eff} = 4.573 \pm 0.017 \mu_B$, where μ_B is the Bohr magneton. This value is between the calculated for spin-only moments on the Mn atoms: $\mu_{eff} = 4.90 \mu_B$ for Mn(III) and $\mu_{eff} = 3.87 \mu_B$ for Mn(IV). From this result, the amount of Mn(IV) and Mn(III) present in the sample can be obtained and, as a consequence, the oxygen stoichiometry of the perovskite LaMnO_{3+ δ}. In this case, there is a $31.7 \pm 1.7\%$ of Mn(IV) and, then, $\delta = 0.16$. However, this value can be

subjected to some error due to the small range of temperatures measured above the Curie temperature.

6. Conclusions

We have studied the synthesis of $La_{1-x}A_xMnO_{3+\delta}$ (A = Ca, Sr, Ba) nanoparticles in nonaqueous solvents, trying to find the best conditions (metallic precursors, solvothermal temperature, solvent, annealing temperature). Acetophenone has proven to be a suitable solvent for the synthesis of the perovskite; however, in some cases, small amounts of secondary phases are also present. In all the cases, an annealing step is required after the solvothermal treatment in order to crystallise the perovskite. $La_{0.67}Sr_{0.33}MnO_{3+\delta}$ sample prepared in acetophenone (A2_d) shows a ferromagnetic behaviour and an effective magnetic moment of $\mu_{eff} = 4.573 \pm 0.017\mu_{B}$. From the magnetic measurements, the stoichiometry was estimated to be $La_{0.67}Sr_{0.33}MnO_{3.16}$.

Acknowledgments

Carlos Vázquez-Vázquez wants to thank the Max– Planck Society for financial support (D.-B.K.). Markus Niederberger and Markus Antonietti are acknowledged for helpful discussion and lab facilities. Rona Pitschke is also acknowledged for the TEM measurements.

References

- S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264 (1994) 413.
- [2] H.L. Ju, J. Gopalakrishnan, J.L. Peng, Q. Li, G.C. Xiong, T. Venkatesan, R.L. Greene, Phys. Rev. B 51 (1995) 6143.
- [3] A. Hammouche, E. Siebert, A. Hammou, M. Kleitz, J. Electrochem. Soc. 138 (1991) 1212.
- [4] S.J. Skinner, Fuel Cells Bull. 4 (2001) 6.
- [5] I. Maurin, P. Barboux, Y. Lassailly, J.P. Boilot, Chem. Mater. 10 (1998) 1727.

- [6] C. Vázquez-Vázquez, M.C. Blanco, M.A. López-Quintela, R.D. Sánchez, J. Rivas, S.B. Oseroff, J. Mater. Chem. 8 (1998) 991.
- [7] C. Ciaravino, R. Lyonnet, J.P. Scharff, B. Durand, J.P. Deloume, J. High Temp. Mater. Proc. 3 (1999) 269.
- [8] C. Bernard, C. Laberty, F. Ansart, B. Durand, Ann. Chim. Sci. Mat. 28 (2003) 85;

A. Barnabe, M. Gaudon, C. Bernard, C. Laberty, B. Durand, Mater. Res. Bull. 39 (2004) 725.

- [9] D. Zhu, H. Zhu, Y. Zhang, Appl. Phys. Lett. 80 (2002) 1634;
 D. Zhu, H. Zhu, Y.H. Zhang, J. Phys. Condens. Matter 14 (2002) L519.
- [10] J.J. Urban, L. Ouyang, M.-H. Jo, D.S. Wang, H. Park, Nano Lett. 4 (2004) 1547.
- [11] M. Niederberger, M.H. Bartl, G.D. Stucky, Chem. Mater. 14 (2002) 4364.
- [12] M. Niederberger, M.H. Bartl, G.D. Stucky, J. Am. Chem. Soc. 124 (2002) 13642.
- [13] M. Niederberger, F. Krumeich, K. Hegetschweiler, R. Nesper, Chem. Mater. 14 (2002) 78.
- [14] M. Niederberger, G. Garnweitner, N. Pinna, M. Antonietti, J. Am. Chem. Soc. 126 (2004) 9120.
- [15] A. Wold, R.J. Arnott, J.B. Goodenough, J. Appl. Phys. 29 (1958) 387.
- [16] F.M. Menger, M. Ladika, J. Am. Chem. Soc. 109 (1987) 3145.
- [17] M.P. Rosynek, D.T. Magnuson, J. Catalysis 46 (1977) 402.
- [18] N. Pinna, G. Ganweitner, P. Beato, M. Niederberger, M. Antonietti, Small 1 (2005) 112.
- [19] K.C. Patil, G.V. Chandrashekhar, M.V. George, C.N.R. Rao, Can. J. Chem. 46 (1968) 257.
- [20] D.G. Karraker, J. Inorg. Nucl. Chem. 31 (1969) 2815.
- [21] R. Aumont, C. R. Acad. Sci. Paris Série C 272 (1971) 314.
- [22] S. Irusta, L.M. Cornaglia, E.A. Lombardo, Mater. Chem. Phys. 86 (2004) 440.
- [23] N. Imanaka, T. Masui, Y. Kato, J. Solid State Chem. 178 (2005) 395.
- [24] D.B. Faithful, S.M. Jonson, I.J. Mc Colm, Rev. Chim. Min. 10 (1973) 291.
- [25] A.A. Filippova, A.A. Davydov, Y.M. Shchekochikhin, Izv. Sib. Otd. An. Khim. 1 (1976) 73.
- [26] G. Brauer, E. Mohr-Rosenbaum, Z. Anorg. Allg. Chem. 394 (1972) 301.
- [27] G.V. Subba Rao, C.N.R. Rao, J.R. Ferraro, Appl. Spectrosc. 24 (1970) 436.
- [28] A.H. Morrish, The Physical Principles of Magnetism, IEEE Press, New York, 2001.
- [29] J. Töpfer, J.B. Goodenough, Chem. Mater. 9 (1997) 1467.